Home » Math Formulas
Math Formulas

Math Formulas Complex numbers Sets of Numbers Set Identities

Math Formulas Complex numbers

  • Equality of complex numbers
  • Addition of complex numbers
  • Subtraction of complex numbers
  • Multiplication of complex numbers
  • Division of complex numbers
  • Polar form of complex numbers
  • Multiplication and division of complex numbers in polar form
  • De Moivre's theorem
  • Roots of complex numbers    

Math Formulas  Sets of Numbers 

  • Natural numbers (counting numbers )
  • Whole numbers ( counting numbers with zero )
  • Integers ( whole numbers and their opposites and zero )
  • Irrational numbers: Non repeating and nonterminating integers
  • Real numbers: Union of rational and irrational numbers  

Math Formulas Set Identities

  • Union of sets
  • Intersection of sets
  • Complement
  • Difference of sets
  • Cartesian product

Math Formulas Set Identities

 Set Identities involving union
  • Commutativity
  • Associativity
  • Idempotency

Set Identities involving intersection
  • Commutativity
  • Associativity
  • Idempotency 
 Set Identities involving union and intersection
  • Distributivity
  • Domination
  • Identity 
Set Identities involving union, intersection and complement
  • Complement of intersection and union
  • De Morgan's laws  
 Set identities involving difference

Math Formulas | Complex numbers

Math Formulas Complex numbers Sets of Numbers Set Identities

Math Formulas Complex numbers

Definitions:

A complex number is written as a+bi where a and b are real numbers an i, called the imaginary unit, has the property that i2=−1.
The complex numbers z=a+bi and z−=abi are called complex conjugate of each other.

Formulas:

Equality of complex numbers

a+bi=c+dia=c  and  b=d
Addition of complex numbers

(a+bi)+(c+di)=(a+c)+(b+d)i

Subtraction of complex numbers

(a+bi)−(c+di)=(ac)+(bd)i

Multiplication of complex numbers

(a+bi)(c+di)=(acbd)+(ad+bc)i

Division of complex numbers

a+bic+di=a+bic+dicdicdi=ac+bdc2+d2+bcadc2+d2i

Polar form of complex numbers

a+bi=r(cosθ+isinθ)

Multiplication and division of complex numbers in polar form

[r1(cosθ1+isinθ1)][r2(cosθ2+isinθ2)]=r1r2[cos(θ1+θ2)+isin(θ1+θ2)]


r1(cosθ1+isinθ1)r2(cosθ2+isinθ2)=r1r2[cos(θ1θ2)+isin(θ1θ2)]

De Moivre's theorem

[r(cosθ+isinθ)]n=rn(cos(nθ)+isin(nθ))

Roots of complex numbers

[r(cosθ+isinθ)]1/n=r1/n(cosθ+2kÏ€n+isinθ+2kÏ€n)  k=0,1,…,n1

Math Formulas | Sets of Numbers

Math Formulas Complex numbers Sets of Numbers Set Identities


Math Formulas Sets of Numbers

Definitions:

N : Natural numbers
N0 : Whole numbers
Z : Integers
Z+ : Positive integers
Z : Negative integers
Q : Rational numbers
C : Complex numbers

Formulas:

Natural numbers (counting numbers )

N={1,2,3,…}

Whole numbers ( counting numbers with zero )

N0={0,1,2,3,…}

Integers ( whole numbers and their opposites and zero )

Z={…,−2,−1,0,1,2,…}


Z+=N={1,2,…}


Z={…,−3,−2,−1}


Z=Z0Z

Irrational numbers: Non repeating and nonterminating integers

Real numbers: Union of rational and irrational numbers
Complex numbers:

C={x+iy | xR  and  yR}


NN0ZQRC

Math Formulas | Set Identities

Math Formulas Complex numbers Sets of Numbers Set Identities

Math Formulas ► Set Identities

Definitions:
Universal set : I
Empty set:
Union of sets

AB={x:xA  or  xB}
Intersection of sets

AB={x:xA  and  xB}
Complement

A={xI:x/A}
Difference of sets

AB={x:xA  and  x/B}
Cartesian product

A×B={(x,y):xA  and  yB}

Set identities involving union

Commutativity

AB=BA
Associativity

A(BC)=(AB)C
Idempotency

AA=A

Set identities involving intersection

Commutativity

AB=BA
Associativity

A∩(BC)=(AB)∩C
Idempotency

AA=A

Set identities involving union and intersection

Distributivity

A(BC)=(AB)∩(AC)


A∩(BC)=(AB)(AC)
Domination

A=


AI=I
Identity

A=


AI=A

Set identities involving union, intersection and complement

Complement of intersection and union

AA=I


AA=
De Morgan's laws

(AB)=AB 


(AB)=AB 

Set identities involving difference


BA=B(AB)


BA=BA


AA=


(AB)∩C=(AC)(BC)


A=IA