Math Formulas ► Complex numbers ► Sets of Numbers ► Set Identities
Math Formulas ► Set Identities
Definitions:
Universal set : I
Empty set: ∅
Union of sets
A∪B={x:x∈A or x∈B}
|
Intersection of sets
A∩B={x:x∈A and x∈B}
|
Complement
A′={x∈I:x/∈A}
|
Difference of sets
A∖B={x:x∈A and x/∈B}
|
Cartesian product
A×B={(x,y):x∈A and y∈B}
|
Set identities involving union
Commutativity
A∪B=B∪A
|
Associativity
A∪(B∪C)=(A∪B)∪C
|
Idempotency
A∪A=A
|
Set identities involving intersection
Commutativity
A∩B=B∩A
|
Associativity
A∩(B∩C)=(A∩B)∩C
|
Idempotency
A∩A=A
|
Set identities involving union and intersection
Distributivity
A∪(B∩C)=(A∪B)∩(A∪C)
|
A∩(B∪C)=(A∩B)∪(A∩C)
|
Domination
A∩∅=∅
|
A∪I=I
|
Identity
A∪∅=∅
|
A∩I=A
|
Set identities involving union, intersection and complement
Complement of intersection and union
A∪A′=I
|
A∩A′=∅
|
De Morgan's laws
(A∪B)′=A′∩B ′
|
(A∩B)′=A′∪B ′
|
Set identities involving difference
B∖A=B∖(A∪B)
|
B∖A=B∩A′
|
A∖A=∅
|
(A∖B)∩C=(A∩C)∖(B∩C)
|
A′=I∖A
|